

The Poona Gujarati Kelavani Mandal's HARIBHAI V. DESAI COLLEGE of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO.: 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) = AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Restructured Syllabus (CBCS Pattern as per NEP 2020)

To be implemented from Academic Year: 2024-25

Faculty	Science and Technology			
Program	B.Sc. Computer Science			
Department	Electronic Science			
Class	F.Y.B.Sc. Computer Science			

SEMESTER-1

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
Ι	ELC-101- TH	Subject-3	Principle of Analog Electronics	Theory	2	2

Course Objectives:

- To study various types of semiconductor devices
- To study elementary electronic circuits and systems
- To study Instrumentation System
- To study various blocks of instrumentation System
- To study smart instrumentation system

Course Outcomes:

- Recall the key concepts related to diodes, BJTs, oscillators, converters, instrumentation, and op-amps.
- Understand the principles and characteristics of electronic components and circuits.
- Apply knowledge to design and build basic electronic circuits.
- Analyze the performance of electronic devices and systems.
- Evaluate the practical applications of electronic components.

Unit	Tile and Content	No. of lectures in Clock Hours				
Chapter 1	Semiconductor Diodes	05 Hrs				
Semiconductor	Semiconductor, P and N type semiconductors, Formation of PN junction diode, it's working.					

Zener diode, LED, Photo diode (Symbol, working principal, list of applications only)

Chapter 2	Bipolar Junction Transistor (BJT)	05 Hrs
Amplifier co	tion Transistor (BJT) symbol, types, construction, working onfigurations - CB, CC (only concept), CE configurations, Definition of α , β and Υ , Concept of Biasing (number)	on: input and output
Chapter 3	Oscillators	05 Hrs
Barkhauson oscillator	Criteria, Low frequency Wein-bridge oscillator, Hig	h frequency crystal
Chapter 4	Data converters	05 Hrs
-	tal to Analog converters, parameters, weighted resistive r d of Analog to Digital converters, parameters, Flash ADC.	
Chapter 5	Introduction to Instrumentation System	05 Hrs
sensitivity, ro Infrared sens	ctive and passive sensors. Specifications of sensors: Accu esolution, reproducibility. Temperature sensor (Thermist or (PIR), C Motor, stepper motor	
Chapter 6	OPAMP as signal Conditioner	05 Hrs
Concept, blo impedance, l	ck diagram of Op amp, basic parameters (ideal and practic bandwidth, differential and common mode gain, CMRI cept of virtual ground.	cal): input and output
Reference Books	:	
 Principles of Sedha R.S. Sensors and Sensors and 	Devices and Circuits I – T. L. Floyd- PHI Fifth Ed of Analog Electronics - A.P. Malvino , A Text Book Of Applied Electronics, S. Chand & d Transducers : D. Patranabis, PHI publication, 2n d Transducers : Prof A.D. Shaligram d Linear Integrated Circuits: Ramakant Gaikwad	& Company Ltd nd Edition
	uation: 15 Marks (Internal Examination, Seminars, Preser luation: 35 Marks (Final Theory Examination)	ntation Assignments)

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO. : 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) = AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
Ι	ELC-102- PR	Subject-3	Electronics Practical Course I	Practical	2	4

Course Objectives:

- To study different semiconductor diodes.
- To understand applications of IC 555 as a multivibrator.
- To study different applications of op-amp.
- To understand applications of sensors

- Use different semiconductor diodes for various applications.
- Understand the different applications of diodes, BJT, Data convertors circuits, Sensors and Op-Amp.
- Analyze the performance of the circuits
- Design and test the circuits

Course	Content				
Group	A (Any 13)				
1.	Study of forward and reverse bias characteristics of PN junction diode.				
2.	2. To study the forward characteristics of LED for different colours				
3.	• Study of Zener diode as a voltage regulator				
4.	Study of Optocoupler (mechanism and characteristics, Working principle of Light emitting diode, photo diode)				
5.	Study of Transistor as a switch.				
6.	Study of IC 555 as astable multivibrator used as square wave generator / clock				
7.	Study of Digital to Analog Converter using R-2R ladder network				

8.	Study of optical sensor (LDR)					
9.	Study of temperature sensor (LM35)					
10.	Study of PIR sensor					
11.	Study of Study of Op amp as inverting/non-inverting amplifier					
12.	Op Amp as a Unity gain follower					
13.	Study of Op-amp as adder/subtractor					
14.	Study of Flash ADC.					
15.	Study of Wein-bridge oscillator.					
16.	Study of crystal oscillator					
Group	B: Activity (Any 1: Equivalent to 2 Practicals)					
1.	Bipolar Junction Transistor (BJT) symbol, types, construction, working principle, Transistor. Amplifier configurations - CB, CC (only concept), CE configuration: input and output characteristics, Definition of α , β and Υ , Concept of Biasing (numerical problems not expected),					
	Identification of components (Passive and Active) and study of multimeter -					
	a) Minimum 10 different types of components are expected.b) Identification based on visual inspection / data sheets.c) Measure the various parameters using multimeter.					
2.	Technical survey of 5 electronic appliances used in different fields (Home, Hospital, Agriculture, Chemical industry, Automobile industry)					
Sugges	ted Readings/Material:					
2. 3. 4. 5.	Electronic Devices and Circuits I – T. L. Floyd- PHI Fifth Edition Principles of Analog Electronics - A.P.Malvino Sedha R.S., A Text Book Of Applied Electronics, S.Chand& CompanyLtd Sensors and Transducers : D. Patranabis, PHI publication, 2nd Edition Sensors and Transducers : Prof A.D.Shaligram Op Amp and Linear Integrated Circuits: Ramakant Gaykwad					
Examina	ition Scheme					
Ir	ternal Evaluation: 15 Marks (Internal Examination, Journal Completion, Seminars,					
P	rojects)					
E	xternal Evaluation: 35 Marks (Final Practical Examination)					

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO. : 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) = AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

SEMESTER-2

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
II	ELC-151- TH	Subject-3	Principle of Digital Electronics	Theory	2	2

Course Objectives:

- To learn different number systems and their inter conversion
- To understand logic gates and their applications,
- To study rules and laws of Boolean algebra
- To understand the design of combination circuits and their different types.
- To introduce flip flop and their role in sequential circuit.

- Recall key concepts of number systems, digital codes, logic gates, Boolean algebra, and combinational circuits.
- Understand the principles and characteristics of logic gates, digital components and systems.
- Apply knowledge to conversions, logic circuit design, and Boolean simplification.
- Evaluate the functionality and applications of digital components or circuits.

Unit	Tile and Content	No. of lectures in Clock Hours			
Chapter 1	Number Systems and Digital Codes	Hrs			
Introduction to decimal, binary, octal and hexadecimal number system and their inter- conversions, the concept of 1's and 2's complements, binary addition, binary subtraction using 1's and 2's complements, BCD code, Excess-3 code, Gray code and ASCII code.					
Chapter 2	Logic gates and Logic families	06 Hrs			
Chapter 2 Logic gates and Logic families 00 Hrs Logic gates: 00 Hrs					
Basic and derived (symbol, Boolean equation and truth table), concept of universal gates. Concept parity and application Ex-OR gate as parity generator and Checker.					
Basic and deri					

Chap	ter 3	Boolean Algebra and K-Map	06 Hr
	Boolean algebr	ean Algebra, De-Morgan's theorems, simplification of ra, minterms, maxterms, Boolean expression in SOP and xpression to its standard SOP/POS form.	0 1
	Introduction of	f K-Map (Only Concept).	
Chap	ter 4	Combinational Circuits	06 Hr
	Encoders: dec	Multiplexer (2:1, 4:1), demultiplexer (1:2, 1:4) a simal to BCD/binary, 3x4 matrix keyboard encoder	
	Decoders: BC	D to decimal and BCD to seven segment decoders.	
Chap		D to decimal and BCD to seven segment decoders. Flip-flops	05 Hr
Chap	ter 5	-	
•	ter 5	Flip-flops	
Refer	ter 5 RS Flip Flop u ence Books:	Flip-flops	
Refer	ter 5 RS Flip Flop u ence Books: Digital Design	Flip-flops using NAND gate, clocked RS Flip Flop, D Latch, J K	
Refer 1. 2. 3.	ter 5 RS Flip Flop u ence Books: Digital Design Digital System Digital electro	Flip-flops Ising NAND gate, clocked RS Flip Flop, D Latch, J K I - M. Morris Mano, PHI, New Delhi. In Principles and Applications - Ronald J. Tocci. Inics - G. K. Kharate, Oxford University Press.	
1. 2. 3.	ter 5 RS Flip Flop u ence Books: Digital Design Digital System Digital electro	Flip-flops Ising NAND gate, clocked RS Flip Flop, D Latch, J K - M. Morris Mano, PHI, New Delhi. Is Principles and Applications - Ronald J. Tocci.	
Refer 1. 2. 3. 4.	ter 5 RS Flip Flop u ence Books: Digital Design Digital System Digital electro Fundamentals	Flip-flops Ising NAND gate, clocked RS Flip Flop, D Latch, J K I - M. Morris Mano, PHI, New Delhi. In Principles and Applications - Ronald J. Tocci. Inics - G. K. Kharate, Oxford University Press.	Flip Flop, T Flip Flop
Refer 1. 2. 3. 4. 5.	ter 5 RS Flip Flop u ence Books: Digital Design Digital System Digital electro Fundamentals	Flip-flops Ising NAND gate, clocked RS Flip Flop, D Latch, J K F - M. Morris Mano, PHI, New Delhi. Is Principles and Applications - Ronald J. Tocci. nics - G. K. Kharate, Oxford University Press. of Digital Circuits - Anand Kumar. Ples and Applications - Malvino and Leach, TMG Hill H	Flip Flop, T Flip Flop

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO. : 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
II	ELC-152- PR	Subject- 3	Electronics Practical Course II	Practical	2	4

Course Objectives:

- To understand logic gates ICs and their applications in Digital Design.
- To design different digital circuits using logic gates.
- To study different combinational circuits.

- Understand the design and build of digital circuits using logic gates.
- Use breadboard / tag-board for building small electronic circuits.
- Design digital circuits for different applications.
- Validate observed outputs with expected theoretical outputs.

Course	Content		
Group	A (Any 13)		
1.	Verification of logic gates by using digital ICs.		
2.	Realization of basic gates using discrete components		
3.	Realization of basic gates using universal logic gates.		
4.	Verification of De Morgan's theorems.		
5.	Study of half adder and full adder using logic gates.		
6.	Study of half subtractor and full subtractor using logic gates.		
7.	4-bit binary parallel adder and subtractor using IC7483.		
8.	3-bit binary to Gray conversion using logic gates.		
9.	3-bit Gray to Binary conversion using logic gates.		

10.	Study of EX-OR gate as a 4-bit parity generator.							
11.	Study of EX-OR gate as a 4-bit parity checker.							
12.	Study of 1-bit digital comparator.							
13.	Study of ALU using IC 74181.							
14.	Study of multiplexer and demultiplexer.							
15.	Study of Decimal to BCD/Binary encoder.							
16.	Study of Priority Encoder IC 74148							
17.	Study of BCD to seven segment decoder using IC 7447							
18.	Study JK Flip Flop							
19.	Study D and T Flip Flop							
Group	B: Activity (Any 1: Equivalent to 2 Practicals)							
1.	Perform any 2 experiments from Group A using circuit simulation software LTSPICE / Circuit Mod / Proteus etc. (Give preference to not performed experiments)							
2.	Technical survey of 5 electronic appliances used in different fields (Home, Hospital, Agriculture, Chemical industry, Automobile industry)							
Sugges	sted Readings/Material:							
	Digital Design - M. Morris Mano, PHI, New Delhi. Digital Systems Principles and Applications - Ronald J. Tocci. Digital electronics - G. K. Kharate, Oxford University Press. Fundamentals of Digital Circuits - Anand Kumar. Digital Principles and Applications - Malvino and Leach, TMG Hill Edition.							
Examina	ation Scheme							
Iı	nternal Evaluation: 15 Marks (Internal Examination, Journal Completion, Seminars,							
Р	rojects)							
E	xternal Evaluation: 35 Marks (Final Practical Examination)							

The Poona Gujarati Kelavani Mandal's HARIBHAI V. DESAI COLLEGE of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO.: 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) = AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Restructured Syllabus (CBCS Pattern as per NEP 2020)

To be implemented from Academic Year: 2024-25

Faculty	Science and Technology
Program	Bachelor of Computer Application (Science)
Department	Electronic Science
Class	F.Y.B.C.A. (Science)

SEMESTER-1

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
Ι	CA-103- TH	Subject-2	Computer Organization and Architecture	Theory	2	2

Course Objectives:

- To study number system, logic gates
- To understand combinational and sequential circuits
- To provide a broad overview of architecture and functioning of computer systems
- To learn the basic concepts behind the architecture and organization of computers

- Recall key concepts of number systems, digital codes, logic gates, Boolean algebra, and combinational circuits.
- Understand the principles and characteristics of logic gates, digital components and block diagram of CPU, Memory and types of I/O transfers.
- Apply knowledge to conversions, logic circuit design, and Boolean simplification.
- Evaluate the functionality and applications of digital components or circuits.

Unit	Tile and Content	No. of lectures in Clock Hours
Chapter 1	Data representation and Computer Arithmetic	06 Hrs

BCD code,	ecimal, Binary, Octal, Hexadecimal Number systems and Gray code, Excess-3 code, ASCII, EBCDIC, Unicode, and 2's complements, Binary arithmetic.	
Chapter 2	Boolean Algebra & Logic Gates	06 Hrs
using Boole	orems, Boolean Laws, De Morgan's Theorem, Reduction an Algebra, Introduction to Logic (AND, OR, NOT), Or rsal Logic gates, Implementation of other gates using unit	Classification of Logic
Chapter 3	Combinational Circuits	06 Hrs
Full subtrac	f combinational circuits, Detail study of Half adder, Full for, Multiplexer (4:1) & Demultiplexer (1:4), Encoder ine-to-8-line), Parity generator and checker, Block diagra	(8-line-to- 3-line) and
Chapter 4	Sequential circuits	06 Hrs
Shift Registers registers.	hronous-Up down counter, Synchronous- Ring counter, I and their types, serial to parallel and parallel to serial	converters using shift
Chapter 5	CPU, Memory and I/O Organization	06 Hrs
and CISC Mem	f CPU, functions of CPU, general register organization, for System hierarchy, Cache Memory, Internal Memoral Memory. Basics of I/O organisation: types of I/O data	ory, External Memory,
Reference Book	ð:	
2. Flod and Jair	Iodern Digital Electronics", McGraw-Hill Publications n, "Digital Fundamentals", Pearson Publication. o, "Computer System Architecture" Prentice-Hall.	
Examination Scher	ne	
	uation: 15 Marks (Internal Examination, Seminars, Pres luation: 35 Marks (Final Theory Examination)	entation Assignments)
		•

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO.: 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
Ι	CA-104- PR	Subject-2	Lab Course on CA-103-TH	Practical	2	4

Course Objectives:

- To study number system, logic gates
- To understand combinational and sequential circuits
- To provide a broad overview of architecture and the functioning of computer systems
- To learn the basic concepts behind the architecture and organization of computers.

- Understand the design and build of digital circuits using logic gates.
- Use breadboard / tag-board for building small electronic circuits.
- Design digital circuits for different applications.
- Validate observed outputs with expected theoretical outputs.

Course	Course Content				
Group	Group A (Any 10)				
1.	Verification of logic gates by using digital ICs.				
2.	Verification of De Morgan's theorems.				
3.	Study of half adder and full adder using logic gates.				
4.	3-bit binary to Gray conversion using logic gates.				
5.	3-bit Gray to Binary conversion using logic gates.				
6.	Study of EX-OR gate as a 4-bit parity generator.				
7.	Study of EX-OR gate as a 4-bit parity checker.				
8.	Study of ALU using IC 74181.				
9.	Study of multiplexer and demultiplexer.				

10.	Study of Decimal to BCD encoder.				
11.	Study of up-down counter				
12.	Study of SR and JK flip flop				
13.	Study of D and T flip				
14.	Study of Serial In Parallel Out Shift register.				
15.	Study of Parallel In Serial Out Shift register.				
16.	Study of Diode matrix ROM				
Group	B: Activity (Any 1: Equivalent to 2 Practicals)				
1.	a) Perform any 2 experiments from Group A using circuit simulation softwar				
	LTSPICE / Circuit Mod / Proteus etc. (Give preference to not performed experiments)				
2.	Technical survey of 5 electronic digital appliances used in different fields.				
Sugges	ted Readings/Material:				
1.	Digital Design - M. Morris Mano, PHI, New Delhi.				
2.	Digital Systems Principles and Applications - Ronald J. Tocci.				
3.	Digital electronics - G. K. Kharate, Oxford University Press.				
4.	Fundamentals of Digital Circuits - Anand Kumar.				
4.					
4. 5.	Fundamentals of Digital Circuits - Anand Kumar.				
4. 5. Examina	Fundamentals of Digital Circuits - Anand Kumar. Digital Principles and Applications - Malvino and Leach, TMG Hill Edition.				
4. 5. Examina	Fundamentals of Digital Circuits - Anand Kumar. Digital Principles and Applications - Malvino and Leach, TMG Hill Edition. Ition Scheme				

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO.: 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

SEMESTER-2

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
II	CA-153- TH	Subject-2	Introduction to Microcontrollers	Theory	2	2

Course Objectives:

- To study the basics of microcontroller.
- To learn 8051 Programming.
- To understand interfacing techniques of 8051microcontroller.
- To learn to design simple applications using 8051microcontroller.

- Recall microcontroller concepts and 8051 architecture components.
- Explain the 8051-block diagram and SFR.
- Write assembly programs and interface 8051 with external memory.
- Debug assembly programs for I/O, timers, and interrupts.Develop C programs for 8051 I/O operations and applications.

Unit	Tile and Content	No. of lectures in Clock Hours			
Chapter 1	Introduction of 8051 Microcontroller	09 Hrs			
and microproc Features of 809 organization, S	Introduction of microcontrollers and microprocessors, difference between microcontrollers and microprocessors, classification of microcontrollers, Applications of microcontrollers. Features of 8051 microcontrollers, block diagram & Architecture of 8051, Internal Memory organization, SFRS, PSW register, pin functions of 8051, Structure of I/O ports, External Memory Interface.				
Chapter 2	8051 Programming Model	08 Hrs			
Instruction set	Assembly programming, Compilers. Assemblers, Ins , Addressing Modes: Immediate, register, direct, ectives (ORG, END), features with examples. I n C.	indirect and relative,			

Chapter 3	Timers and Counters	06 Hrs					
	unter: TMOD, TCON, SCON, SBUF, PCON Reg g for time delay using mode 1 and mode 2.	isters, Timer modes,					
Chapter 4	Interrupts and Interfacing	06 Hrs					
_	Interrupts: Introduction to interrupt, Interrupt types and their vector addresses, Interrupt enable register and interrupt priority register (IE, IP).						
Basics of Int	erfacing: ADC, DAC, LCD, stepper motor.						
Reference Books	5:						
	8051 microcontroller and Embedded system using assembly and C : Mazidi andMcKinley, Pearson publications.						
	. The 8051 microcontroller – Architecture, programming and applications: K.UmaRao and Andhe Pallavi, Pearson publications.						
Examination Scher	ne						
	Internal Evaluation: 15 Marks (Internal Examination, Seminars, Presentation Assignments) External Evaluation: 35 Marks (Final Theory Examination)						

of Arts, Science & Commerce (Autonomous)

Affiliated to Savitribai Phule Pune University (Linguistic Minority Institution) AICTE NO. : 1-44457797714 ID No.: PU / PN / ASC / 057/ (1984) NAAC Grade B++ (2.86 CGPA) AISHE CODE : C-41829 Principal: Dr. Rajendra G. Gurao M.Sc., Ph.D. Email: principal@hvdesaicollege.edu.in

Semester	Course Code	Type of Course	Course Title	Theory/ Practical	Credits	No. of clock hours per week
II	CA-154- PR	Subject-2	Lab Course on CA-153-TH	Practical	2	4

Course Objectives:

- To study the basics of microcontroller.
- To learn 8051 Programming.
- To understand interfacing techniques of 8051microcontroller.
- To learn to design simple applications using 8051microcontroller.

- Write programs using instruction set of 8051 microcontrollers.
- Interface I/O peripherals to 8051 microcontroller.
- Design simple microcontroller-based applications.

Course Content		
Group A (Any 9)		
1.	Study of 8051 microcontroller chip, keil µvision-5.	
2.	Study of proteus simulator for 8051 simulation.	
3.	Program to find Largest/smallest from a series.	
4.	Program to perform Addition / subtraction / multiplication/division of 8/16 bit data.	
5.	Program to perform Arithmetic, logical & code conversion problems	
6.	Program to perform data transfer/exchange between specified memorieslocations.	
7.	Interfacing of LED/LEDs to 8051 microcontroller.	
8.	Interfacing of switch & LED to 8051 microcontroller.	
9.	Waveform generation using DAC Interface to 8051 Microcontroller.	
10.	Traffic light controller using 8051 microcontroller.	
11.	Interfacing LCD to 8051Microcontroller.	
12.	Interfacing with IR sensor to 8051 microcontroller and LCD.	

13.	ADC interfacing to 8051 Microcontroller.
14.	Stepper motor interfacing to 8051 microcontroller.
15.	DC motor interfacing to 8051 microcontroller.
Group B: Activity (Equivalent to 3 Practicals)	
1.	Develop a module based on microcontroller project
Suggested Readings/Material:	
1. 8051 microcontroller and Embedded system using assembly and C : Mazidi and	

- 1. 8051 microcontroller and Embedded system using assembly and C : Mazidi and McKinley, Pearson publications.
- 2. The 8051 microcontroller Architecture, programming and applications: K.UmaRao and Andhe Pallavi, Pearson publications.

Examination Scheme

Internal Evaluation: 15 Marks (Internal Examination, Journal Completion, Seminars,

Projects)

External Evaluation: 35 Marks (Final Practical Examination)